A vast photovoltaic facility now being built in Egypt is part of a global trend.
Egypt will soon be home to the world’s largest solar farm, a vast collection of more than 5 million photovoltaic panels. When it’s completed next year, the $4 billion Benban solar park near Aswan will cover an area 10 times bigger than New York’s Central Park and generate up to 1.8 gigawatts of electricity. That’s roughly the output of two nuclear power plants combined.
But Benban probably won’t hold on to its title for long. China may not be far behind and even Japan is talking about putting a large-scale solar farm in space.That’s roughly the output of two nuclear power plants combined and almost double the planned capacity of the vast Villanueva facility now growing in the Mexican state of Coahuila — currently the largest facility in the Americas. (The largest solar farm in the U.S. is the 580-megawatt Solar Star facility near Los Angeles.)
But Benban probably won’t hold on to its title for long.
China is planning to build a two-gigawatt solar farm in the northwestern province of Ningxia, and the state of Gujarat in western India recently gave the go-ahead for a five-gigawatt facility. Japan is even talking about putting a large-scale solar farm in space.
The bigger, the cheaper
“There are huge savings for larger projects,” says Benjamin Attia, a solar analyst with Wood Mackenzie, an energy consulting firm based in Edinburgh, Scotland. “Logistics, transport, construction and installation all benefit from scale economies. We’ll start to see more solar parks of one and two gigawatts, and potentially even 10 gigawatts in the future.”
The plunging cost of solar panels is part of the cost-savings equation. A 2017 report from the U.S. National Renewable Energy Laboratory found that the cost of photovoltaic systems shrank by a factor of five from 2010 to 2017. Even the punitive tariffs on Chinese solar panels enacted earlier this year by the Trump administration are unlikely to slow the spread of large-scale solar, which in the U.S. is already cheaper and much cleaner than coal.
“Governments have wised up,” says Attia. “They just want the cheapest, fastest way to add new electricity supplies. For nuclear, procurement can take a decade. For gas, it’s up to four years. If you’re talking solar and things go smoothly, you can build a reasonably large project in 18 months.”
Solar power is now a particularly attractive option for developing countries. When solar panels were more expensive, only rich nations could afford the subsidies and tax breaks that allowed solar farms to make financial sense. In many sunny parts of the world, solar power is now competitive with other power sources without financial assistance (and that’s also true for parts of the U.S. and other developed nations).
Some of the biggest new farms, including Benban, are set up so that the panels are owned and operated not by a single utility but instead shared by dozens of firms. This arrangement helps reduce the red tape associated with permits and regulations, says Attia, and allows even small solar start-ups to benefit from economies of scale.
The key role of Infrastructure
But even if the cost of solar panels continues to fall, there are upper limits to the size of future solar parks. A solar farm is only useful if the electricity it generates can reach the homes and factories that need it, often hundreds of miles away. Electricity transmission grids can struggle to cope with the intermittent power that massive new wind and solar farms generate.
“Typically, those locations are going to be pretty remote,” says Daniel Kirschen, professor of electrical engineering at the University of Washington in Seattle. “The grid around new solar or wind farms will not be very strong. So you’re going to need to reinforce the grid, and that can get quite expensive.”
Source: https://www.nbcnews.com/mach/science/supersized-solar-farms-are-sprouting-around-world-maybe-space-too-ncna901666?cid=eml_nbn_20180818